Using Topography Statistics to Help Phase Unwrapping

نویسنده

  • A. Monti Guarnieri
چکیده

Conventional techniques approach Phase Unwrapping (PU) as an optimization problem, where figures of merit like the total branch-cut length, the number of cuts, etc, is to be minimized. They disregard the properties of the field to be unwrapped: the topography, i.e. the DEM, projected in the SAR reference. The purpose of the paper is to fill in this gap by providing statistics of the “fringe maps”. We first exploit the Woodward theorem to link the interferogram Power Spectrum Density (PSD) with the Probability Density Function (PDF) of the Phase Gradient that would result in a likely topography. A parametric model of the expected, unwrapped PG PDF is then derived by exploiting the fractal properties of topography. Its parameters can be accurately estimated given the wrapped PG. This model provides useful statistic information for phase unwrapping. It is then possible, for example: (a) to estimate the number of residuals; (b) to find the best azimuth presumming factor and, (c), to find the optimal interferogram range demodulation. Finally, we exploit the second order statistics of the PG field (as a fractal) to derive a suitable approximation for the expected length of the branch cuts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic cost functions for network flow phase unwrapping

The well-studied Interferometric Synthetic Aperture Radar (InSAR) problem for digital elevation map generation involves the derivation of topography from radar phase. The topography is a function of the full phase, whereas the measured phase is known modulo , necessitating the process of recovering full phase values via phase unwrapping. This mathematical process becomes difficult through the p...

متن کامل

Problems and Solutions for Insar Digital Elevation Model Generation of Mountainous Terrain

During the last decade, the techniques to generate digital elevation models (DEM) from SAR interferometry have been demonstrated and refined to a quasi-operational status using data from the ERS tandem mission. With this experience and an improved single-pass system concept, data from the Shuttle Radar Topography Mission (SRTM) acquired in 2000 have been used to produce a global DEM with unprec...

متن کامل

InSAR Kalman Filter Phase Unwrapping Algorithm Based on SRTM DEM

PU (phase unwrapping) is the key step and important problem in DEM (digital elevation model) extraction and the measurement of surface deformation of InSAR (Interferometric synthetic aperture radar). The CKFPUA (conventional Kalman filter phase unwrapping algorithm) can obtain reliable results in the flat terrain areas, but it caused error transmission not making the accurate inversion of surfa...

متن کامل

StaMPS Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz

Interferometric Synthetic Aperture Radar (InSAR) capability to detect slow deformation over terrain areas is limited by temporal decorrelation, geometric decorrelation and atmospheric artefacts. Multitemporal InSAR methods such as Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS) have been developed to deal with various aspects of decorrelation and atmospheric problems affecting ...

متن کامل

Optimal Antenna Spacings in Interferometric SAR

In practice, a synthetic aperture radar (SAR) reconstructs the complex reflectivity function of a scene, modulated by phase terms that capture 3-D imaging geometry. INSAR (interferometric SAR) attempts to obtain the geometric information by interfering two images (from two antennas) to cancel the same scene reflectivity and recover the scene topography transduced by the image-phase data. This a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003